
Logistics and Introduction to
the Course

Mayank Mittal

AE640A: Autonomous Navigation

January 8, 2018

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Course Logistics
● Course name: Autonomous Navigation (AE640A)
● Timing and Venue: Mon/Wed 5:10-6:30 pm, L-11
● Course Website: https://ae640a.github.io
● Course Discussion Forum: Canvas
● Course Staff:

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Prof. Mangal Kothari
mangal@iitk.ac.in

Mayank Mittal
mayankm@iitk.ac.in

Krishnraj Singh Gaur
ksgaur@iitk.ac.in

https://ae640a.github.io

Grading Policy (Tentative)
● 4-5 Homework Assignments: 40 %

○ Needs to typeset (LaTeX preferred)
○ Code submitted should be documented and readable

● Project: 35 %
○ Groups of two members
○ Implementation based on recent work on robotics
○ Exceptional work in the course project may earn you a direct A grade

● Final Exam: 20%
● Class Participation: 5%

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Introduction to Robot
Operating System (ROS)

Mayank Mittal

AE640A: Autonomous Navigation

January 8, 2018

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Outline
● What is ROS?
● ROS Communication Layer

○ ROS Master
○ ROS Nodes
○ Topics, Services, Actions

● ROS Ecosystem
○ ROS Packages
○ Catkin build system

● Libraries/Tools in ROS
○ Point Cloud (PCL Library)
○ Coordinate Transformation (Tf Library)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

IMU
Laser
scanner

Camera

GPS
Motor and
Encoder

Robot

How to integrate sensors and
actuators in your robot

software suite?

AE640A: Lecture 1: System Integration Using ROS Framework Mayank MittalAE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Raspberry Pi

Intel NUC Arduino

ODROID XU4

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Robot

How to interface the hardware
using microprocessors and

microcontrollers?

What is ROS?
● A “meta” operating system for robots
● A collection of packaging, software

building tools
● An architecture for distributed

interprocess/ inter-machine
communication and configuration

● Development tools for system runtime
and data analysis

● A language-independent architecture
(c++, python, lisp, java, and more)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

What is ROS?

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

What is ROS not?

● An actual operating system
● A programming language
● A programming environment / IDE
● A hard real-time architecture

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

What does ROS get you?
All levels of development

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

ROS Communication Layer : ROS Core

● ROS Master

○ Centralized Communication Server based on XML and RPC

○ Negotiates the communication connections

○ Registers and looks up names for ROS graph resources

● Parameter Server

○ Stores persistent configuration parameters and other arbitrary data.

● `rosout`

○ Network based `stdout` for human readable messages.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU MunichSlide Credit: Lorenz Mösenlechner, TU Munich

ROS Communication Layer : Graph Resources

● Nodes
○ Processes distributed over the network.
○ Serves as source and sink for the data sent over the network

● Parameters
○ Persistent data such as configuration and initialization settings, i.e the

data stored on the parameter server. e.g camera configuration
● Topics

○ Asynchronous many-to-many communication stream
● Services

○ Synchronous one-to-many network based functions

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

ROS Communication Protocols: Connecting Nodes
● ROS Topics

○ Asynchronous “stream-like” communication
○ Strongly-typed (ROS .msg spec)
○ Can have one or more publishers
○ Can have one or more subscribers

● ROS Services
○ Synchronous “function-call-like” communication
○ Strongly-typed (ROS .srv spec)
○ Can have only one server
○ Can have one or more clients

● Actions
○ Built on top of topics
○ Long running processes
○ Cancellation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Lorenz Mösenlechner, TU Munich

Interfaces with the camera
hardware and reads the data

transmitted by the sensor

Used to display images

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

advertise(“images”)

camera node is run. It starts advertising the
data it has received

Image Courtesy: Lorenz Mösenlechner, TU Munich

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

topic:images

master registers the topic with name images

Image Courtesy: Lorenz Mösenlechner, TU Munich

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

topic:images

subscribe(“images”)

viewer node is run. It asks for data being
published in topic with name images

Image Courtesy: Lorenz Mösenlechner, TU Munich

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

topic:images

subscribe(“images”)

master ‘connects’ the viewer node to the
camera node.

Image Courtesy: Lorenz Mösenlechner, TU Munich

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

images(tcp)

topic:images

Image Courtesy: Lorenz Mösenlechner, TU Munich

master ‘connects’ the viewer node to the
camera node.

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer
node using TCP/IP based protocol

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer
node using TCP/IP based protocol

Asynchronous Distributed Communication

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

images(tcp)

topic:images

publish(img)

Image Courtesy: Lorenz Mösenlechner, TU Munich

camera node sends the data to the viewer
node using TCP/IP based protocol

ROS Master

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Manages the communication
between nodes

● Every node registers at startup with
the master

Slide Credit: Marco Hutter, ETH Zurich

$ roscore

Master

Start a master with

More info:
http://wiki.ros.org/Master

ROS Nodes

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Single-purpose, executable program
● Individually compiled, executed, and

managed
● Organized in packages

Slide Credit: Marco Hutter, ETH Zurich

$ rosrun package_name node_name

Master

Run a node with

$ rosnode list

See active nodes with

Node 1 Node 2

Registration Registration

More info:
http://wiki.ros.org/rosnode

ROS Topics

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Nodes communicate over topics
○ Nodes can publish or subscribe to a topic
○ Typically, 1 publisher and n subscribers

● Topic is name for stream of messages

Slide Credit: Marco Hutter, ETH Zurich

$ rostopic list

Master

See active topics with

$ rostopic echo /topic

Subscribe and print the contents of a topic with

Node 1
Publisher

Node 2
Subscriber

Registration Registration

TopicPublish Subscribe

More info:
http://wiki.ros.org/rostopic

ROS Messages

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Data structure defining the type of a topic
○ Comprised of a nested structure of integers,

floats, strings etc. and arrays of objects
● Defined in *.msg files

Slide Credit: Marco Hutter, ETH Zurich

$ rostopic type /topic

Master

See the type of a topic

$ rostopic pub /topic type args

Publish a message to a topic

Node 1
Publisher

Node 2
Subscriber

Registration Registration

TopicPublish Subscribe

More info:
http://wiki.ros.org/messages

int num
double width
string data etc.

Message Definition

ROS Messages

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/std_msgs

ROS Services

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Request/response communication
between nodes is realized with services

○ The service server advertises the service
○ The service client accesses this service

● Similar in structure to messages, services
are defined in *.srv files

Slide Credit: Marco Hutter, ETH Zurich

$ rosservice list

Master

List available services with

$ rosservice type /service_name

Show the type of a service

Node 1
Service Client

Node 2
Service Server

Registration Registration

Service
NameRequest Response

More info:
http://wiki.ros.org/messages

Request

Response

Service Definition

ROS Action

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Similar to service calls, but provide
possibility to

○ Cancel the task (preempt)
○ Receive feedback on the progress

● Best way to implement interfaces to
time- extended, goal-oriented
behaviors

● Similar in structure to services, action
are defined in *.action files

● Internally, actions are implemented
with a set of topics

Slide Credit: Marco Hutter, ETH Zurich

Master

Node 1
Action Client

Node 2
Action Server

Registration Registration

Action

Goal
Cancel

Status
Result
Feedback

More info:
http://wiki.ros.org/messages

Goal

Result

Feedback

Action Definition

ROS Action

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/messages

$ catkin_create_pkg package_name {dependencies}

ROS Packages

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● ROS software is organized into
packages, which can contain source
code, launch files,configuration files,
message definitions, data, and
documentation

● A package that builds up on/requires
other packages (e.g. message
definitions), declares these as
dependencies

To create a new package, use:

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Packages

Separate message definition
packages from other packages!

How to organize code in a ROS ecosystem?
ROS code is grouped at two different levels:

● Packages:
○ A named collection of software that is built and treated as an atomic dependency in the ROS

build system.
● Stacks:

○ A named collection of packages for distribution.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

How to organize code in a ROS ecosystem?

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

“package” “stack”

catkin Build System
● catkin is the ROS build system to generate executables, libraries, and

interfaces
● The catkin command line tools are pre-installed in the provided installation.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

$ cd ~/catkin_ws

Navigate to your catkin workspace with

$ catkin_make --package package_name

Build a package with

$ source devel/setup.bash

Whenever you build a new package, update your environment

catkin Build System
The catkin workspace contains the following spaces

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

The source space contains
the source code. This is

where you can clone,
create, and edit source

code for the packages you
want to build.

The build space is where
CMake is invoked to build

the packages in the source
space. Cache information

and other intermediate files
are kept here.

The development (devel)
space is where built targets
are placed (prior to being

installed).

Slide Credit: Marco Hutter, ETH Zurich

ROS Launch

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● launch is a tool for launching multiple
nodes (as well as setting parameters)

● Are written in XML as *.launch files
● If not yet running, launch automatically

starts a roscore

Slide Credit: Marco Hutter, ETH Zurich

$ roslaunch package_name file_name.launch

Start a launch file from a package with

More info:
http://wiki.ros.org/roslaunch

$ rosparam list

ROS Parameter Server

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Nodes use the parameter server to
store and retrieve parameters at
runtime

● Best used for static data such as
configuration parameters

● Parameters can be defined in launch
files or separate YAML files

List all parameters with

More info:
http://wiki.ros.org/rosparam

ROS GUI Tools

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

More info:
http://wiki.ros.org/rqt

rqt : A QT based GUI developed for ROS rviz : Powerful tool for 3D Visualization

(demo in next class)

ROS Time
● Normally, ROS uses the PC’s system

clock as time source (wall time)
● For simulations or playback of logged

data, it is convenient to work with a
simulated time (pause, slow-down
etc.)

● To work with a simulated clock:
○ Set the /use_sim_time parameter

○ Publish the time on the topic /clock from
■ Gazebo (enabled by default)
■ ROS bag (use option --clock)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosparam set use_sim_time true

● To take advantage of the simulated
time, you should always use the
ROS Time APIs:

○ ros::Time

○ ros::Duration

ros::Time begin = ros::Time::now();
double secs = begin.toSec();

ros::Duration duration(0.5); // 0.5s

ROS Bags
● A bag is a format for storing

message data
● Binary format with file extension *.bag
● Suited for logging and recording

datasets for later visualization and
analysis

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosbag record --all

Record all topics in a bag

$ rosbag record topic_1 topic_2 topic_3

Record given topics

$ rosbag info bag_name.bag

Show information about a bag

$ rosbag play [options] bag_name.bag

--rate=factor Publish rate factor
--clock Publish the clock time (set

param use_sim_time to true)
--loop Loop playback

Record given topics

Libraries/Tools available with ROS

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Open Source Robotics Foundation

What are Point Clouds?
● “Cloud”/collection of n-D points (usually n=3)
● Used to represent 3D information about the world:

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

How are Point Clouds collected?

Laser scans
(high quality)

Stereo cameras
(passive & fast but dependent on texture)

Time of flight cameras
(fast but not as accurate/robust)

Simulation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

How are Point Clouds useful?
● Spatial information of the environment has many important applications

○ Navigation / Obstacle avoidance
○ Grasping
○ Object recognition

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

More info:
http://wiki.ros.org/pcl

Detection of cars in Point Cloud Grasping Objects on Table

Coordinate frames

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● robots consist of many links
● every link describes its own

coordinate system
● sensor measurements are local to

the corresponding link
● links change their position over

time

Specifying the Arrangement of Devices

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● All these devices are mounted on
a robot in an articulated way.

● Some devices are mounted on
other devices that can move.

● In order to use all the sensors/
actuators together we need to
describe this configuration.

○ For each “device” specify one or
more frames of interest

○ Describe how these frames are
located w.r.t each other

Slide Credit: Wolfram Burgard, University of Freiburg

Defining the Structure

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Each “Link” is a reference frame of a
sensor

● Each “joint” defines the transformation
that maps the child link in the parent
link.

● ROS does not handle closed
kinematic chains, thus only a “tree”
structure is allowed

● The root of the tree is usually some
convenient point on the mobile base
(or on its footprint)

Slide Credit: Wolfram Burgard, University of Freiburg

References
● Slides from lectures on ‘Programming for Robotics’ by ETH Zurich
● A Gentle Introduction to ROS, Jason M. O'Kane. Oct 2013 (available online)
● Berger, E., Conley, K., Faust, J., Foote, T., Gerkey, B.P., Leibs, J., Ng, A.Y.,

Quigley, M., & Wheeler, R. (2009). “ROS: an open-source Robot Operating
System”.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

http://www.rsl.ethz.ch/education-students/lectures/ros.html
https://www.cse.sc.edu/~jokane/agitr/

